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Active circulation control of the two-dimensional unsteady separated flow past a plate 
with a suction point on the downstream wall is considered. The rolling-up of the 
separated shear layer is modelled by a pair of point vortices whose time-dependent 
circulation is predicted by an unsteady Kutta condition. A nonlinear controller able 
to confine the wake to a single vortex pair of constant circulation is derived in closed 
form for any free-stream condition. Dynamical system analysis is used to explore the 
performance of the controlled system. Finally, the control strategy is applied to three 
different classes of  unsteady flows and the results are discussed. 

1. Introduction 
Active control of unsteady separated fluid flows is attracting wide interest in 

both the fluid mechanics and control communities because of the many potential 
engineering applications. See Gad-el-Hak & Bushnell (1991) for a discussion and 
references. Drag reduction, lift enhancement, noise and vibration control, mixing 
improvement, etc. are some of the many problems where active control of flows past 
bluff bodies finds natural applications. 

The problem of actively controlling an unsteady fluid flow is in general nonlinear. 
Since the control of nonlinear systems remains a research topic, there is no general 
framework to obtain a desired controller. However, it is well known that the model 
chosen to represent the plant is of crucial importance in the derivation of the con- 
troller. A very complex and detailed model, the full Navier-Stokes equations for exam- 
ple, might generate an overly complex controller or might make the derivation of the 
controller impossible. On the other hand, an over-simplified or linear model facilitates 
the derivation of the controller but might generate a controller unable to achieve the 
desired control objective. A reasonable compromise is a reduced model able to capture 
the dynamic features of the flow that one wants to control. See Cao & Aubry 1993, Ra- 
jaee, Karlsson & Sirovich 1994, Cortelezzi, Leonard & Doyle 1994. Typically, the re- 
duced model is a low-dimensional nonlinear system governed by a set of ordinary dif- 
ferential equations, while the real flow has infinite dimensions. An advantage of work- 
ing with a reduced model is that one can use dynamical system analysis to investigate 
the problem. Analysis of the phase space of the reduced system provides information 
about fixed points, limit cycles, bifurcation points, etc., characteristic of the flow un- 
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der consideration and consequently provides information about the effectiveness and 
robustness of the controller. Another advantage of model reduction is the potential 
for producing fast numerical algorithms which are essential for controlling a real flow. 

Before attempting to control a laboratory flow one should take the intermediate 
step of controlling the same class of flows simulated by a more sophisticated CFD 
(Computational Fluid Dynamics) code. The application of the controller derived for 
the reduced model to a complex model should be successful if the two models are 
dynamically equivalent, i.e. if the phase spaces of the two models are topologically 
equivalent. The equivalence of the two models can be investigated via dynamical 
system and time series analysis. There are many advantages in controlling a flow 
simulated by another CFD code. All the flow quantities required by the controller 
to command the actuator can be easily measured. The action of the controller is 
automatically synchronized with the evolution of the flow because both algorithms 
run in virtual time. Furthermore, the controller can be tested on gradually more 
complex flows. For example, if the controller were derived for an inviscid model, then 
it could be applied to the same flow when the fluid is slightly viscous. In general the 
controller has to be made robust with respect to the perturbations introduced by the 
new environment, e.g. viscosity, three-dimensionality, background noise (see Doyle, 
Francis & Tannenbaum 1992; Fan, Tits & Doyle 1991). Only an iteration process 
might produce a controller able to handle the flow simulated by the Navier-Stokes 
equations. Finally, the control of a laboratory flow can be attempted when the 
controller generated by this chain of refinements is robust enough to perform in the 
presence of the unmodelled and unpredictable uncertainties affecting the real system 
and is fast enough to control the flow in real time. 

Recently, efforts to modify certain features of the wake behind bluff and slender 
bodies, such as reduction or magnification of the wake thickness (Tokumaru & Dimo- 
takis 199 l), wake stabilization (Roussopoulos 1993), vortex cancellation (Kooches- 
fahani & Dimotakis 1988), pattern reproduction (Ongoren & Rockwell 1988a,b; 
Gopalkrishnan et al. 1994), and lift enhancement (Rossow 1977; Slomski & Coleman 
1993) have been successful. In all these investigations the free-stream velocity was 
kept constant and quasi-steady results were achieved usually by moving the body or 
the actuator with a frequency scaled by the shedding frequency. In a more general 
situation in which the free-stream velocity is time dependent this approach is generally 
not sufficient to control the flow and a nonlinear control strategy is necessary. 

The present study investigates the active control of the wake past a plate perpendic- 
ular to an unsteady fluid flow. This problem has been previously studied by Shermer 
(1992) in the viscous case for a constant free-stream velocity, and by Cortelezzi (1993) 
and Cortelezzi et al. (1994) in the inviscid case for an unsteady free-stream velocity 
when the length of the plate is finite and semi-infinite respectively. In all studies 
the control objective was the suppression of the vortex shedding: Shermer achieved 
control by applying a body force, while Cortelezzi and Cortelezzi et al. achieved 
control by changing the length of the plate. All the control strategies showed some 
weaknesses. The global body force used by Shermer cannot be realistically applied in 
most situation, while the controllers derived by Cortelezzi and Cortelezzi et al. were 
able to suppress the vortex shedding only over a finite time. The present investigation 
derives in closed form a nonlinear controller able to confine the wake to a single 
vortex pair of constant circulation over any interval of time using as an actuator a 
suction point on the downstream wall of the plate. 

In $2, we model the unsteady separation from the tips of a flat plate by means of a 
pair of point vortices whose time-dependent circulation is predicted by an unsteady 
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Kutta condition (Brown & Michael 1954; Rott 1956; Cortelezzi 1993; Cortelezzi et 
al. 1994). The problem is further simplified by imposing wake symmetry. The motion 
of the vortex pair is determined by a nonlinear ordinary differential equation first 
proposed by Brown & Michael in 1954. A suitable vortex shedding mechanism is also 
introduced to allow the simulation of flows involving multiple vortices. This reduced 
model is able to capture the main features of the flow and, for example, is quite 
accurate for power-law starting flows. See Cortelezzi (1993) for the validation of the 
model with respect to experimental and numerical results. 

In $3, we consider as a control actuator a suction point placed on the downstream 
wall of the plate. The control objective is to confine the wake to a single vortex pair 
of constant circulation. We show that suction is a very efficient means to control 
the production of circulation. Thanks to the simplicity of the model we obtain for 
any time-dependent free-stream velocity the analytical closed-form solution of the 
controller, i.e. the predicted suction necessary to inhibit the production of circulation 
when a vortex pair is present in the flow. 

In $4, we perform an analysis of dynamical system type to characterize the per- 
formance of the controller. When the free-stream velocity is constant, we show the 
existence of fixed points for the unperturbed system and compute the locus of the 
fixed points. There is a critical value for the circulation associated with the vortex 
pair above which one can find two pairs of fixed points: a pair of stable nodes 
and a pair of saddle points farther downstream. The circulation plays the role of 
a bifurcation parameter and the vector field undergoes a saddle-node bifurcation 
when the circulation is near its critical value. The analysis of the phase space shows 
the existence of a controllable region between the plate and the stable manifolds of 
the saddle points. When the free-stream velocity oscillates periodically about a unit 
mean, we compute the Poincare section to characterize the perturbed system. We 
show the topological equivalence between the Poincare section and the phase space 
of the unperturbed system. The stable node of the Poincare section represents a limit 
cycle while the saddle point represents an unsteady periodic orbit. 

The first two simulations 
document the ability of the controller to drive the vortex pair to the stable nodes 
when the free-stream velocity is constant or to a limit cycle when the free-stream 
velocity oscillates periodically. The third simulation documents the performance of 
the controller when the free-stream velocity oscillates pseudo-randomly. 

In $5, we present the results of three simulations. 

2. Mathematical formulation 
In this section we introduce a mathematical model of the two-dimensional unsteady 

separation from the tips of a finite plate with a suction point of strength s at the centre 
of the downstream wall. Let us assume that the regions of vorticity that separate from 
the boundary layer and are convected away are thin enough to justify a description 
by means of a vortex sheet. The consequent stretching and rolling up of the vortex 
sheet, due to the unsteadiness of the flow, suggests replacing the spirals with point 
vortices. However, the vortex sheet which represents the separating boundary layer 
is not completely lost. It connects the separation point to a point vortex of variable 
circulation which is able to satisfy an unsteady Kutta condition. Furthermore, it is 
assumed to be of negligible circulation with respect to the circulation of the point 
vortex. The mathematical representation of the feeding vortex sheet is simply the 
branch cut due to the logarithmic singularity representing the vortex. All the other 
vortices in the wake are represented by point vortices of fixed circulation. 
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FIGURE 1. Physical and mapped planes for the flow past a flat plate. 

We choose, for simplicity, a frame of reference fixed to the plate so that the body 
can be identified with the segment [-2ia,2ia] and the suction point s coincides with 
the point (O+,O). Then, the flow of an incompressible irrotational fluid about such a 
body can be analysed via conformal mapping. Using the Joukowski transformation 

we map the finite plate of length L = 4a in the z-plane onto the circle of radius a in 
the [-plane (see figure l), preserving the characteristic of the flow at infinity. 

To make the problem dimensionless we have to define a characteristic length and 
time scale. For this purpose we write the free-stream velocity as follows: 

U ( t )  = U,  + u(t) ,  (2.2) 

where U, is the unperturbed free-stream velocity and u(t)  is the time-dependent 
component. If we choose the circle radius as characteristic length and a / U m  as 
characteristic time of the problem then we can define the following dimensionless 
quantities: 

a’ = 1, 

where r is the circulation. Note that fU = u / U ,  contains the unsteadiness of the 
free-stream velocity and is not necessarily small with respect to unity. From this point 
on, we continue the mathematical formulation of the problem using dimensionless 
variables, where the stars are omitted for convenience. 

There is experimental evidence (D. L. Lisosky 1993, private communication) that 
the near wake is nearly two-dimensional and symmetric about the x-axis if the plate 
moves with a non-zero acceleration. Under these circumstances the problem can 
be simplified by imposing symmetry with respect to the real axis, i.e. by requiring 
that the vortices have equal and opposite circulation, T n  and -rn, and are located 
in complex-conjugate positions, [, and f , ,  respectively. Since the velocity field 
has to satisfy Laplace’s equation and the boundary condition in the mapped plane 
can be treated using the circle theorem, we can build the complex potential F by 
superimposing basic flows. Thus, the complex velocity field w = dF/d[ has the form 
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FIGURE 2. Instantaneous stream function, s = -2U. 

Note that for convenience we take the circulation to be positive when in a clockwise 
sense, contrary to the usual convention. Note also that the singularity on the back face 
of the plate behaves as a sink when s > 0 and as a source otherwise. We impose the 
Kutta condition to regularize the potential flow at the tips of the plate. In the [-plane 
the flow is non-singular since the singularity has been absorbed by the mapping. To re- 
move the singularity in the z-plane the complex velocity (2.4) in the mapped plane has 
to be zero at the top and bottom of the circle, i.e. at I: = -ti. Solving for rl we obtain 

Note that the circulation associated with the vortex pair depends on all the flow 
quantities, i.e. free-stream velocity U ,  suction s, position and circulation of all the 
vortex pairs, and the position of the vortex pair 1. The above expression suggests 
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that the Kutta condition can be satisfied even when there are no vortices in the flow. 
It suffices to choose ~ ( t )  = -2U(t) (see figure 2). 

To describe the motion of the vortex pair in the physical plane we use the following 
set of ordinary differential equations: 

with the initial conditions: 

1 z l ( t s )  = 2i, 
Zr(t.7) = zrT, r = 2...N. 

The term containing dTl/dt is known as Brown & Michael's correction (Brown 
& Michael 1954). The motion of the vortex of variable strength described by this 
equation guarantees no net force on the vortex and its connecting cut. The limit on the 
right-hand side, which represents the complex velocity at the vortex location without 
the self-induced contribution, produces the so-called 'Routh's correction' when it is 
evaluated in the mapped plane (e.g. Clements 1973). 

We solve the problem in the mapped plane. Once we have performed the change 
of variables, substituted for the complex potential, and carried out the limit required 
in equation (2.6), we obtain 

(2.8a) 
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where rl is given by (2.5). Note that because of Brown & Michael's correction the 
equations are coupled not only through the position of the vortices but also through 
the velocity of the vortices. 

The forces acting on the plate are of particular interest because they can be 
measured experimentally and are the crucial quantities in any problem involving the 
interaction between fluids and structures. The forces can be computed by means of 
the Blasius theorem, see Cheers (1979), Graham (1980), and Cortelezzi (1993) for 
different derivations. The drag has the following form: 

(2.10) 
The component of the force along the imaginary axis, which represents the lift, is 
zero because of the imposed symmetry. The first term on the right-hand side is the 
force due to added mass, i.e. the inertia of the attached flow, while the second term is 
the contribution due to suction, and the last two terms are the contributions due to 
the evolution of the wake. We define the drag coefficient as follows: 

(2.11) 

Note that the drag coefficient is well defined only in the case where the free-stream 
velocity is constant. In order to compute the drag coefficient in the unsteady cases 
that we present in $5, we choose for U,  the asymptotic value or the mean value of 
the free-stream velocity. 

The final element necessary for a correct implementation of this model is a vortex 
shedding mechanism. If we envision the separation process by means of a vortex 
sheet, then the instantaneous circulation necessary to keep the flow regular at the tip 
of the plate is associated with an infinitesimal segment of the sheet which is shed 
in the fluid. Consequently, the circulation is distributed along the singular line and 
the sheet rolls up around the points of greatest absolute circulation per unit length, 
and it stretches most where the absolute circulation per unit length is smallest. As 
the process continues, we observe that a large amount of circulation concentrates 
in the core of the spirals which are connected to each other by filaments of almost 
negligible circulation. This process can be reflected in our model by replacing each 
spiral with a point vortex of fixed circulation, except for the spiral connected to the 
separation point which is replaced by a point vortex with time-dependent circulation. 
This latter vortex will continue to be fed circulation until the rate of change of 
circulation becomes zero because we conjecture that this is the part of the sheet that 
will be stretched the most. 

Let us consider the problem of shedding a new vortex when N - 1 other vortices 
are already present in the flow. If t ,  is the shedding time, then it is crucial to analyse 
the transition from t; to tf. Up to the time t;, the variable strength of vortex 1 
satisfies the Kutta condition. At time t = t,, the strength of this vortex is frozen and 
all the vortices are renumbered. Finally at t,' a new vortex 1 is introduced into the 
flow to remove the square-root singularity. If we restrict our simulation to the case 
where the shed vortices have alternate sign, then we can model the vortex shedding 
by making the assumption that the time t = t ,  is determined by the condition 

(2.12) 
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assuming d2rl/dt21 t=t, $. 0. Any other choice for the shedding time implies the 
arbitrary production of two sequential vortices of the same sign or the existence 
of a vortex whose strength decreases in time. The latter situation is physically 
unacceptable. This procedure has been proposed by Graham (1980) to simulate the 
flow induced by an oscillating diamond-shaped cylinder. 

The quality of the simulation with many vortices depends in large part on the 
shedding mechanism. Let us assume that between two zero crossings d r , / d t  is 
positive and has two peaks, then it is not clear whether one or two vortices should 
be shed during this period. It seems that the deepness of the trough separating the 
peaks would be an important parameter. If it is very deep it seems reasonable to 
have two vortices, otherwise one is sufficient. Although the shedding mechanism can 
be implemented for all cases, to avoid any ambiguity we restrict ourselves to cases 
where the rate of circulation production has only one local maximum or minimum 
between consecutive zero crossings or, equivalently, where d2rl  /dt2 does not change 
sign between crossings. 

Because of the size and complexity of the problem we are not attempting to obtain 
an analytical solution. We solve the problem numerically using the methods described 
in our previous work (Cortelezzi 1993). 

3. Active wake control 
There are different approaches one can use to control the wake past a plate by 

suction. One can try to control the position of the vortices or some features of the 
velocity field. We choose to control the amount of circulation injected in the flow 
because we believe that this is the most efficient way to control the wake. To gain 
insight into the effectiveness of the suction as a mean to control the circulation, we 
compute the rate of circulation production by taking the time derivative of (2.5) : 

xi 
- = -  dT1 
dt 

-xi 

(3.1) 
From the above expression we see that the rate of circulation production depends 
on all flow quantities and their derivatives. Note that suction and rate of change of 
suction contribute to the production of circulation in the same way as free-stream 
velocity and free-stream acceleration, respectively. Hence, using suction as a means 
to control the rate of circulation production is as powerful as using the free-stream 
velocity. 

Our control objective is to inhibit the rate of circulation production after the 
starting vortex pair is shed in the flow. In other words, we want to predict the 
suction so that once the starting vortex pair is shed in the flow the Kutta condition 
remains satisfied without requiring a new vortex pair. The possibility of maintaining 
the wake confined to a controlled recirculating bubble has important implications for 
the problem of drag reduction in general. Moreover it can provide insight into vortex 
management techniques for the three-dimensional flow over a delta wing (see Rao 
1987). Note that there is no conceptual difficulty in inhibiting the rate of circulation 
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production when more than one vortex pair in present in the wake, if it is required 
by the application under consideration. 

Let t ,  be the time when the starting vortex pair is shed in the flow, i.e. the time 
when the rate of circulation production is zero. Then for 0 ,< t < t, the motion of the 
vortex pair of time-dependent circulation is prescribed by the following equation : 

I = (A) { u (1 - $1 + 2 [& - 1 - 

with the initial condition 

il(0) = i .  (3.3) 
Note that suction appears in the above equation but in this study it is not used to 

manipulate the wake for c ,< t,. In general, suction can be used to drive the system to 
some desired state at t = t,, from which the controller that inhibits the production of 
circulation takes over. 

When t 3 t ,  the equation of motion for the vortex pair of constant circulation &l-ls 
is 

with the initial condition 

iJ(rs) = :Ir .  (3.5) 
To close the problem we have to provide an equation for s which implements our 
control strategy. An ordinary differential equation for s can be obtained from (3.1) 
simply by setting d r , / d t  = 0, and T n  = 0, for n = 2,3, ..., N .  Nevertheless, a simpler 
result follows from the fact that the problem of maintaining d r l / d t  = 0, ' i t  > t,, is 
equivalent to the problem of maintaining the Kutta condition satisfied when a vortex 
pair of fixed circulation is present in the flow. Then the suction which implements our 
control strategy is simply derived by solving (2.5) for s when rll = 0, n = 2,3, ..., N .  
We have 

A question arises about the compatibility of the equations (3.2) and (3.4). Com- 
patibility is required to guarantee a smooth transition, at time t = t,, from the final 
state of equation (3.2) to the initial state of equation (3.4). At time t = t, the Brown 
& Michael correction vanishes and the two equation coincide, consequently ensuring 
compatibility. 
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FIGURE 3. Locus of the fixed points. 

4. Dynamical behaviour of the controlled system 
In the previous section we have been able to find a controller which inhibits the 

production of circulation when a vortex pair is present in the flow. This section is 
devoted to the analysis of the dynamical behaviour of the controlled system. 

As an initial step we solve for the fixed points of the unperturbed system. For 
convenience we rewrite equation (3.4) in polar form (see figure 1). We obtain 

rlsp:[8p:(p;' + 1 - 2p: sin 8,) cos2 O1 - (p;' - 1)2] sin 01 
4n:[(p;' + 1 ) 2  - 4p: cos2 2811 cos 81 

+ 

2~p:  cos el 
p1 + 1 - 2pl sin 81 

[ u(p :  + 1) cos 81 + dB1 - PI -- 
dt p l +  1 - 2p: cos 201 

where 

Note that in the above equations the free-stream velocity is indicated with U for 
clarity although it is simply unity. Consequently, the problem depends only on one 
parameter, namely the circulation rl, of the vortex. 

When suction is zero there is no vortex pair which is stationary and satisfies 
the Kutta condition, aside from the pathological situation where the vortex pair 
has infinite circulation and is infinitely distant from the plate. To the best of our 
knowledge there is no experimental evidence which contradicts this prediction. When 
suction is non-zero, there are fixed points and their locus is shown in figure 3. Each 
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FIGURE 4. Suction ( u )  and circulation of the top vortex (b) .  

point on this curve represents the position of a vortex which is stationary and satisfies 
the Kutta condition, and whose circulation is shown in figure 4(b). The suction 
associated with each fixed point is shown in figure 4(a). The reader should be aware 
that we restrict our discussion to the upper half of the domain owing to the symmetry 
of the problem. 

We derive a linear stability analysis to investigate the nature of the fixed points. 
Figure 5 shows the real and imaginary parts of the eigenvalues I,, and Al. Three 
distinct regions can be recognized. Near the plate, where 0 < x < x I ,  the eigenvalues 
A1 and jL2 are complex conjugates with positive real parts (see figure 5) .  In this region 
the fixed points are unstable foci. Figure 4 shows that both circulation and suction 
are negative. Physically it means that the Kutta condition is unusually satisfied by 
a vortex generating a counterclockwise flow and by injecting fluid. In particular, 
when x = 0, there are no vortices in the flow and the case shown in figure 2 is 
recovered. In the middle region. where x I  < x < I?, the eigenvalues are purely real 
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with A1 < ,I2 < 0 (see figure 5). In this region the fixed points are stable nodes. 
Circulation and suction are both positive as expected (see figure 4). Note that the 
values of circulation and of suction at x = x; are the minimum values necessary to 
have a stable fixed point, that is Tc = 18.49 and s, = 0.67 respectively. Note also 
that the asymptote at x = x1 separates two regions with totally different dynamics. 
No smooth transition is possible between the two regions since both circulation and 
suction are discontinuous at x = xl .  In the third region, where x > x2, the eigenvalues 
are purely real with ,I1 < 0 < ,I2 (see figure 5) .  In this region the fixed points are 
saddle points. As before, circulation and suction are both positive (see figure 4). The 
circulation increases from Tc to infinity while the suction decreases monotonically to 
zero as x goes from x2 to infinity. Note that at x = x2 the eigenvalue 22 is zero; this 
fact represents a sufficient condition for the bifurcation of a fixed point. 

We restrict our discussion to the sub-domain where x > xl, TI, > 0, and s > 0. 
It is important to observe that in this sub-domain there are fixed points only when 
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FIGURE 6. Vortex trajectories, U = 1:  rl, = 15 (a), f l ,  = 18.49 ( h ) ,  f l s  = 20 (c); Poincare section, 
U = 1 + esin(cot), e = 0.1, (0 = 20n. f I (  = 20 ( d ) .  

rl, 2 fc. As suggested by the behaviour of the eigenvalue i 2 ,  the vector field 
undergoes a saddle-node bifurcation at x = x2 when I-,, = Tc. Hence, the circulation 
T I ,  plays the role of bifurcation parameter. Technically, the bifurcation should be 
analysed using the centre manifold theorem (see Guckenheimer & Holmes 1983, 
Chap. 41, but to maintain the paper focused on fluid mechanics we skip this formal 
step. To document the effect of the bifurcation parameter and to give a complete 
characterization of the dynamics of the system, we plot the sub-space of the phase 
space which coincides with the physical domain. In this plane the lines of flow of the 
vector field coincide with the trajectories of the vortex. The reader should be aware 
that these trajectories are obtained for constant free-stream velocity and circulation 
while suction in general changes along each trajectory. When T l ,  < T,. there are no 
fixed points. There are only two families of trajectories delimited by a separatrix (see 
figure 6a). When a vortex starts above the separatrix it drifts irreversibly downstream. 
When, instead, the vortex starts below the separatrix, depending on its initial position 
it can temporarily approach the plate, but eventually it drifts downstream. When 
rl, = f c  there is a non-hyperbolic fixed point and the flow pattern of the centre 
manifold can be easily recognized (see figure 6b). Finally, when TI, > r,. there are two 
hyperbolic fixed points: a stable node and a saddle point (see figure 6c). The vortex 
trajectory is characterized by the initial position of the vortex with respect to the stable 
manifold of the saddle point. I f  the vortex is initially on the left of the stable manifold, 
then it is driven by the controller to the stable node. It is interesting to observe that the 
trajectories between the stable manifold and the x-axis extend infinitely downstream. 
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When the vortex and its image are initially in the narrow region delimited by the 
stable manifold and the image manifold, they propel themselves upstream, and with 
the help of suction they first approach the plate and then are driven to the stable 
node and its image. When, instead, the vortex is initially on the right of the stable 
manifold it drifts downstream even if it temporarily approaches the plate. We define 
the controllability region as the basin of attraction of the stable node, i.e. the region 
delimited by the coordinate axes and the stable manifold of the saddle point. Note 
that as r,, increases, the distance between stable node and saddle point also increases, 
with a consequent widening of the controllability region. 

Since our final goal is to control the wake past the plate in the presence of 
an unsteady free-stream condition, it is crucial to investigate how the phase space 
changes under a time-dependent perturbation. The answer to this question is given 
by a theorem (see Guckenheimer & Holmes 1983, Chap. 4) which guarantees that 
the Poincare section of a periodically perturbed system is topologically equivalent, 
for sufficiently small perturbations, to the phase space of the unperturbed system 
provided that the fixed points are hyperbolic. We perturb our system with a free- 
stream velocity of the form U ( t )  = 1 + E sin(ot) and compute the PoincarC section by 
plotting the vortex position at t = 2nz/o  for n = 0,1,2, ... . The resulting Poincare 
section presents two hyperbolic fixed points: a stable node and a saddle point, see 
figure 6(d). The stable node represents a limit cycle and the saddle point an unstable 
periodic orbit. As we show in the next section (see Figure 9b), the vortex is driven 
to a periodic orbit if it is initially on the left of the stable manifold of the Poincard 
section. The topological equivalence between the phase space and the Poincark section 
becomes evident by comparing figures 6(c) and 6(d). Because of this equivalence we 
can extend the definition of controllability region to the perturbed system. The 
controllability region coincides with the basin of attraction of the stable node of the 
Poincare section. 

In conclusion, suction is a powerful means of controlling the wake past a plate 
both in perturbed and unperturbed conditions provided that the vortex is initially 
within the controllability region. In the unperturbed case the vortex is driven to the 
stable node while in the periodically perturbed case it is driven to a periodic orbit. 

5 .  Results 
In this section we present the results of three simulations. The first two simulations 

document the ability of the controller to drive the vortex to the stable node when 
the free-stream velocity is constant, or to a limit cycle when the free-stream velocity 
oscillates periodically. The third simulation documents the performance of the 
controller when the free-stream velocity oscillates pseudo-randomly. In all simulations 
the initial evolution of the free-stream velocity was carefully chosen so that a vortex 
pair of nearly the same circulation rl, > Tc is shed in the flow at nearly the same time. 
Furthermore, suction is used to control the wake only after the rate of circulation 
production has gone to zero, i.e. when t > t,, in order to provide the reader with 
an unbiased performance of the controller. In general, suction can be used to drive 
the system to a preferred state by the time t = t,y when the controller takes over. 
Finally, all simulations have been terminated at t = 10 for editorial reasons although 
the controller could have performed successfully over any interval of time. 

In the first simulation the free-stream velocity increases from rest, reaches a maxi- 
mum value, and decreases to a unit value at t = 1 (see figure 7a). Three distinct time 
intervals can be recognized. Initially, when 0 < t < t,, the flow is uncontrolled and 
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FIGURE. 7. Simularion 1. ( a )  Free-stream velocity and suction. ( h )  Trajectory of the top vortex: 
x, vortex position at t = t , ;  0, vortex position at t = 1. ( c )  Circulation and rate of circulation 
production associated with the top vortex. ( d )  Drag coefficient. 

separates from the tips of the plate, creating a vortex pair which drifts downstream. 
Figure 7 ( h )  shows the trajectory of the top vortex. The rate of circulation production 
associated with the top vortex increases initially, decreases during the deceleration, 
and eventually becomes zero at t = z , ~  x 0.71 thereby triggering the controller (see 
figure 7 ~ ) .  At the same time the circulation of the top vortex reaches its maximum 
and final value (see figure 7c).  The drag is dominated by the effect of the added mass 
because of the strong accelerations of the flow (see figure 7 4 .  In the second interval, 
t ,  < t < 1, the controller predicts the suction necessary to restrict the wake to a 
single vortex pair of constant circulation, rl, = i20.01 (see figures 7a and 7c).  The 
flow is still decelerating and the suction increases rapidly, driving the vortices away 
from their drifting trajectories and toward the x-axis (see figures 7a and 7b). The 
drag increases suddenly because of the effect of suction, but quickly decreases and 
becomes negative as the effect of the added mass returns to dominate (see figure 7 4 .  
Finally, when I > 1, the free-stream velocity and circulation are constants and suction 
drives the vortex pair to the stable node. Note that the vortex pair moves on the 
trajectory predicted by the analysis in $4 (see for a comparison figures 6c and 7b).  
The drag increases from its minimum value and eventually reaches a zero value as the 
added mass effect is subdued (see figure 7 4 .  Figure 8 ( a - f )  shows the instantaneous 
stream-function during the capturing process; because of symmetry we plot only the 
top half of the domain. Figures 8 ( a )  and 8(b)  show the flow at time t < t,, where 
two recirculating bubbles grow and merge together. As suction becomes non-zero the 
recirculating bubble splits again into two bubbles (see figure 8c). Figure 8(c-f) shows 
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FIGURE 8. Instantaneous stream-function, t = 0.51 (a), t = 0.71 (b ) ,  t = 1.02 (c), t = 2.02 (d),  
t = 4.02 (e) ,  t = 8.02 (f). 

how the vortex is driven to the fixed point. Figures 8(e) and 8 ( f )  are nearly identical 
because the flow has almost reached its steady state. 

In the second simulation the free-stream velocity increases from rest and reaches 
a maximum value, as in the first simulation, but then oscillates about unit mean 



us 

Rionlineur .feedback control of the wake past  a plate 3 19 

t t 

X t 

FIGURE 9. Simulation 2. (a )  Free-stream velocity and suction. ( b )  Trajectory of the top vortex: x, 
vortex position at t = t,; 0, vortex position after one period. f = 2. (c) Circulation and rate of 
circulation production associated with the top vortex. ( d )  Drag coefficient. 

value (see figure 9n). Note that the amplitude of the oscillations is such that the 
flow reverses its direction for nearly one third of the period of oscillation, creating 
one of the worst possible scenarios for the controller. Three distinct intervals of time 
can be recognized. Initially, when 0 < t < t,s, the flow behaves qualitatively as in 
the first simulation (see figure 9a-d). The rate of circulation production becomes 
zero at r = t,$ = 0.69. In the second interval, t ,  < t < 2, the controller predicts the 
suction necessary to restrict the wake to a single vortex pair of constant circulation, 
TI, = f20.04 (see figures 9a and 9c). Suction increases at first, then after a fluctuation 
it reaches its maximum absolute value, and finally decreases sharply. As a result the 
vortices are driven away from their drifting trajectories, at first toward the origin 
and then toward the tip of the plate. At the end of the first period the vortices 
are positioned near the limit-cycle trajectories (see figure 9h). The drag increases 
suddenly because of the effect of suction, then decreases because of the added mass 
effect, and finally presents a sharp peak because of the combined effects of flow 
acceleration and suction fluctuation (see figure 9 4 .  Finally, when t > 2, all the flow 
quantities rapidly reach their final periodic behaviour while the circulation of the 
vortex pair is maintained constant, see figure 9(a--d). The vortices are rapidly driven 
to the limit-cycle trajectories where they orbit during the rest of the simulation, see 
figure 9(h). Figure 10(a-1) show the instantaneous stream-function during one period 
of oscillation, 6 < t < 8, as the vortices move clockwise on the limit-cycle trajectories. 

In the final simulation the free-stream velocity increases from rest and reaches a 
maximum value, as in the previous simulations, but then oscillates pseudo-randomly 
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FIGURE lO(a-f). For caption see facing page. 

about unit mean value (see figure lla). Initially, when 0 < t < t,, the flow behaves 
qualitatively as in the previous simulations (see figure lla-d). At time t = t ,  x 0.70 
the rate of circulation production goes to zero, triggering the controller which restricts 
the wake for the rest of the simulation to a single vortex pair of constant circulation, 
rl, = k20.15 (see figures lla and l lc ) .  Because of the pseudo-random character of 
the the free-stream velocity it is difficult to give an interpretation of the time evolution 
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FIGURE 10. Instantaneous stream-function, t = 6.05 (a), t = 6.25 ( h ) ,  t = 6.35 (c), t = 6.66 (d), 
t = 6.86 ( e ) ,  f = 6.96 (f), t = 7.16 (g).  r = 7.36 (IT), t = 7.46 (i). t = 7.67 ( j ) .  t = 7.87 ( k ) .  t = 8.07 ( I ) .  

of suction in terms of the evolution of the flow. We can only say that suction is able 
to maintain the vortices orbiting on rather complex trajectories close to the plate. 
Note that the trajectories somehow entangle around the position of the stable nodes 
of the unperturbed system (see figures 61. and I l b ) .  
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FIGURE 11. Simulation 3. ( a )  Free-stream velocity and suction. ( b )  Trajectory of the top vortex. ( c )  
Circulation and rate of circulation production associated with the top vortex. (d) Drag coefficient. 

Figures 9(a) and l l(a) might suggest to the reader that a simple phase shift of 
approximatively n: between the free-stream velocity U and suction s is sufficient for 
controlling the wake. In other words, the reader might wonder if a simple-minded 
linear controller which removes fluid when the flow accelerates and injects fluid when 
the flow decelerates can successfully replace the nonlinear controller derived in $3.  
This idea would imply that in the expression for the controller (3.6) the nonlinear 
term depending on the position and circulation of the vortex pair is negligible with 
respect to the linear term in U .  As noted in 92 and showed in figure 2 the linear 
controller s = -2U exactly controls an unsteady flow past a plate when no vortices 
are present in the flow. Consequently, the nonlinear term in expression (3.6) cannot 
be neglected. A careful analysis of figures 9(a) and l l (a)  will show evidence of the 
effect of the nonlinear term. 

6. Conclusions 
A point vortex model has been used to simulate the unsteady separated flow past 

a flat plate with a suction point on the downstream wall. For this model we derived a 
control strategy that confines the wake to a single vortex pair of constant circulation. 
Owing to the simplicity of the model we obtained the analytical closed-form solution 
of the nonlinear controller for any free-stream velocity. The performance of the 
controller was characterized by a dynamical system type of analysis. In the case of 
steady flow the locus of the fixed points of the unperturbed system was computed. 
A pair of stable nodes and a pair of saddle points was shown to exist only if the 
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circulation associated with the vortex pair is above a critical value. It was also 
shown that the vector field presents a saddle-node bifurcation and that the circulation 
is the bifurcation parameter. The controllable region of the unperturbed system 
was identified with the basins of attraction of the nodes. In the case of unsteady 
flow the Poincare section of the perturbed system was computed. Evidence of the 
topological equivalence between the phase space of the unperturbed system and the 
Poincare section was presented. It was also shown that under perturbation the stable 
nodes of the unperturbed system become periodic orbits. The controllable region of 
the perturbed system was identified with the basins of attraction of the nodes of the 
Poincare section. The predictions of our analysis were verified by testing the controller 
with three different unsteady free stream conditions. The first simulation documented 
the ability of the controller to drive the vortex pair to the stable nodes when the 
free-stream velocity is asymptotically constant. The second simulation documented 
the ability of the controller to drive the vortex pair to the periodic orbits when 
the free-stream velocity oscillates periodically about a unit mean. Finally, the third 
simulation showed the successful performance of the controller when the free-stream 
velocity oscillates pseudo-randomly about a unit mean. 

The present study showed that the use of a reduced model provides a favourable 
environment to derive the desired control strategy and to test its performance and 
robustness. The natural continuation of the present work would be to embed the 
derived controller into a more complex and realistic model, for example the Navier- 
Stokes equations. The embedding process should be supported by a dynamical 
system and time series analysis to demonstrate the dynamical equivalence of the 
two models. Testing the controller in a different numerical environment instead 
of in an experiment presents several advantages. All the flow quantities required 
by the controller to command the actuator can be easily measured. The action of 
the controller is automatically synchronized with the evolution of the flow. Finally, 
the controller can be easily tested on gradually more complex flows allowing the 
researcher to make the controller progressively more robust with respect to different 
types of perturbations (e.g. viscosity, three-dimensionality, background noise, etc.). 
Successful completion of this process would open up the possibility of active control 
of large-scale coherent vortical structures in engineering applications. 

The author wishes to thank Dr F. E. Marble for suggesting the use of a suction 
point as a means to control the flow. The author also wishes to thank Dr R. Camassa 
and Dr J. S. Gibson for several valuable discussions. This work was supported by the 
Air Force Office for Scientific Research Grant # F49620-92-5-0279. 
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